

DYNAMIC BEHAVIOUR OF A BATTERY PACK FOR AGRICULTURAL APPLICATIONS

Martelli Salvatore, Mocera Francesco, Costamagna Matteo

Politecnico di Torino – Department of Mechanical and Aerospace Engineering (DIMEAS)

Basic Model			\square	
Modal analysis	Improved model			
Overload Test	Geometry	VIITUAI FIEID TEST	_	
chievement best ombination materials sed – anti-vibrating upport	optimization Natural frequencies growth Improvement impulsive load	Multibody model Load profile extraction FEM analysis Dynamic behaviour	r	
	impulsive load response	Dynamic b during ope assessmer	ehaviour tration ht	

CASE OF STUDY

- Capacity: 16 kWh
- Nominal Voltage: 640 VDC
- 200 Li Ion cells (200s1p)
- 8 battery modules series connected
- 1 Electronic converter (EC)
- Horseshoe BP Case shape
- 10 anti-vibrating supports
- Preserving traditional tractor shape
- Preserving vehicle functionality and
- visibility

FEM MODEL

- Surface Parametric model (SHELL281 6 d.o.f.)
- "Bonded" contact constraints for welds and module fixing on the BP case.
- Presence of 30 kg distributed masses for each module and the electronic converter.
- Maximum element dimension: 30 mm.
- Anti-vibrating supports simulated through 3 orthogonal COMBIN14 spring elements.
- Presence of 2 plane surfaces, representing the chassis, upon which loads and constraints are applied.

MODAL ANALYSIS & OVERLOAD TEST

- Design goals:
 - Natural frequencies > 20 Hz;
 - Maximum allowable stress equal to 1/3 of the corresponding material yield stress;
 - > Maximum vertical deformation equal to 5 mm;
 - > Amplitude of oscillation of EC support plate < 2 mm in absolute value.

Basic k=2200 N/mm

74,381 Ma 67,619

60,857 54,095 47,333

40,57

27,048

20,286

13,524

6,7619

Improved k=3300 N/mm

BASIC MODEL

DATA	VALUE
Battery case walls thickness	4 mm
Modules/EC walls thickness	2,5 mm

Amplitude of oscillation comparison

Basic k=3300 N/mm

IMPROVED MODEL

Geometric model updates:

>Addition of 2 ribs on the EC support plate;

>Battery case cover thickness reduced

from 4 to 3 mm.

≻EC and modules walls thickness reduced from 2,5 to 2 mm.

							-	
Support stiffness [N/mm]	σ_Case [MPa]	σ_module [MPa]	σ_EC [MPa]	SF Case	SF module/EC	V_case [mm]	V_module [mm]	V_EC [mm]
2200 Basic	67,83	19,42	12,44	3,46	8,50	3,93	3,89	3,75
3300 Basic	99,35	20,7	20,48	2,37	7,97	3,5	2,88	3,45
2200 Improved	65,26	23,5	5,64	3,6	7,02	3,68	3,7	3,55
3300 Improved	74,4	26,05	4,99	3,16	6,33	2,91	2,99	2,87

——Improved k=2200N/mm

 $\begin{array}{c} 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,01\\$

VIRTUAL FIELD TEST

Design Goals:

- Load frequency application must not be close to system natural frequencies.
- Maximum allowable stress equal to 1/2 of the corresponding material yield stress;
- Absence of interference;
- Relative vertical deformation between BP and chassis < 2 mm;
- EC support plate amplitude of oscillation < 1 mm.

Analysis • Analysis results

MULTIBODY MODEL

- Chassis and axles simulated with boxprofile section beams.
- ICE linked to the chassis with a fixed joint.
- Wheels and cab linked to the chassis with bushing joints.
- Torque regulation based on vehicle speed and characterized by a asymptotic behaviour.
- Torque limits: 1000 Nm high speed, 2500

Nm low speed.

VIRTUAL FIELD TEST

- Low-speed, vehicle speed: 10 km/h.
- 10 speed bumps distant 2 m from each other.
- Arc of circumference speed bump shape.
- Presence of a operating machine on the back PTO (1000 lumped mass)
- High-speed, vehicle speed: 30 km/h.
- 10 speed bumps distant 2 m from each other.
- Arc of circumference speed bump shape.
- No presence of a operating machine on the back PTO

VIRTUAL FIELD TEST RESULTS

- Good dynamic behaviour of the battery pack.
- Increasing load frequency application, maximum stress increases.
- EC support plate is the most stressed zone.
- Vehicle speed represents a harder condition than the speed bump dimension.
- Almost all the load is absorbed by the battery case.
- The ribs causes a drastic reduction of the EC support plate amplitude of oscillation.
- The antivibranting supports are suitable for this application because the deformation is always smaller than its allowable value.

Field Test	1	2	3	4
Load application frequency	1,4 Hz	2,8 Hz	4,2 Hz	8,33 Hz
Minimum SF encountered	3,6	3	2,5	2,1
Relative vertical deformation between BP and chassis	1,2 mm	0,6 mm	1,6 mm	0,9 mm
Amplitude of oscillation EC support plate	0,4 mm	0,5 mm	0, 55 mm	0,8 mm
Interference	No	No	No	No

BIBLIOGRAPHY

- Mocera F Somà A 2021 A Review of Hybrid Electric Architectures in Construction, Handling and Agriculture Machines, New Perspectives on Electric Vehicles ed Prof. Marian Găiceanu
- S. Arora et al. 2016 Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews (Vol. 60) 1319–1331
- Mocera F Vergori E Somà A Battery Performance Analysis for Working Vehicle Applications. IEEE Transactions on Industry Applications 56 (2020): 644-653.
- Mocera F Somà A 2020 Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications, Energies 13 3055
- Nicolini A Mocera F Somà A 2018 Multibody simulation of a tracked vehicle with deformable ground contact model, J Multi-body Dynamics (Vol. 233) 152–162